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Scheduling

• In discussing processes and threads, we talked about 
context switching
– an interrupt occurs (device completion, timer interrupt)

– a thread causes a trap or exception

– may need to choose a different thread/process to run

• We glossed over the choice of which process or 
thread is chosen to be run next
– “some thread from the ready queue”

• This decision is called scheduling
• scheduling is a policy

• context switching is a mechanism
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Classes of Schedulers

• Batch
– Throughput / utilization oriented
– Example: audit inter-bank funds transfers each night, Pixar rendering, 

Hadoop/MapReduce jobs
• Interactive

– Response time oriented
– Example: attu.cs

• Real time
– Deadline driven
– Example: embedded systems (cars, airplanes, etc.)

• Parallel
– Speedup-driven
– Example: “space-shared” use of a 1000-processor machine for large 

simulations

We’ll be talking primarily about interactive schedulers
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Multiple levels of scheduling decisions

• Long term
– Should a new “job” be “initiated,” or should it be held?

• typical of batch systems
• what might cause you to make a “hold” decision?

• Medium term
– Should a running program be temporarily marked as non-

runnable (e.g., swapped out)?

• Short term
– Which thread should be given the CPU next?  For how long?
– Which I/O operation should be sent to the disk next?
– On a multiprocessor:

• should we attempt to coordinate the running of threads from the 
same address space in some way?

• should we worry about cache state (processor affinity)?
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Scheduling Goals I: Performance

• Many possible metrics / performance goals (which 
sometimes conflict)
– maximize CPU utilization
– maximize throughput (requests completed / s)

– minimize average response time (average time from 
submission of request to completion of 
response)

– minimize average waiting time (average time from 
submission of request to start of execution)

– minimize energy (joules per instruction) subject to 
some constraint (e.g., frames/second)



6

Scheduling Goals II: Fairness

• No single, compelling definition of “fair”
– How to measure fairness?

• Equal CPU consumption? (over what time scale?)

– Fair per-user? per-process? per-thread?

– What if one process is CPU bound and one is I/O bound?

• Sometimes the goal is to be unfair:
– Explicitly favor some particular class of requests (priority 

system), but…

– avoid starvation (be sure everyone gets at least some 
service)
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The basic situation





Schedulable units
(threads)

Resources
(CPU)

Scheduling:
- Who to assign each resource to
- When to re-evaluate your 

decisions
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When to assign?
• Pre-emptive vs. non-preemptive schedulers 

– Non-preemptive
• once you give somebody the green light, they’ve got it until they 

relinquish it
– an I/O operation
– allocation of memory in a system without swapping

– Preemptive
• you can re-visit a decision

– setting the timer allows you to preempt the CPU from a thread even if it 
doesn’t relinquish it voluntarily

– in any modern system, if you mark a program as non-runnable, its memory 
resources will eventually be re-allocated to others

• Re-assignment always involves some overhead
– Overhead doesn’t contribute to the goal of any scheduler

• We’ll assume “work conserving” policies
– Never leave a resource idle when someone wants it

• Why even mention this?  When might it be useful to do something 
else? The disparate speed between CPU and Storage highlight this 
point
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Algorithm #1: FCFS/FIFO

• First-come first-served / First-in first-out (FCFS/FIFO)
– schedule in the order that they arrive

– “real-world” scheduling of people in (single) lines
• supermarkets, McD’s, Starbucks …

– jobs treated equally, no starvation
• In what sense is this “fair”?

• Sounds perfect!
– in the real world, when does FCFS/FIFO work well?

• even then, what’s it’s limitation?

– and when does it work badly?
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FCFS/FIFO example

• Suppose the duration of A is 5, and the durations of B 
and C are each 1
– average response time for schedule 1 (assuming A, B, and 

C all arrive at about time 0) is (5+6+7)/3 = 18/3 = 6
– average response time for schedule 2 is (1+2+7)/3 = 10/3 = 

3.3
– consider also “elongation factor” – a “perceptual” measure:

• Schedule 1:  A is 5/5, B is 6/1, C is 7/1 (worst is 7, ave is 4.7)
• Schedule 2:  A is 7/5, B is 1/1, C is 2/1 (worst is 2, ave is 1.5)

Job A B C

CB Job A

time

1

2



17

• Average response time can be lousy
– small requests wait behind big ones

• May lead to poor utilization of other resources
– if you send me on my way, I can go keep another resource 

busy

– FCFS may result in poor overlap of CPU and I/O activity
• E.g., a CPU-intensive job prevents an I/O-intensive job from 

doing a small bit of computation, thus preventing it from going 
back and keeping the I/O subsystem busy

• Note:  The more copies of the resource there are to 
be scheduled, the less dramatic the impact of 
occasional very large jobs (so long as there is a 
single waiting line)
– E.g., many cores vs. one core

FCFS/FIFO drawbacks
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Algorithm #2: SPT/SJF

• Shortest processing time first / Shortest job first 
(SPT/SJF)
– choose the request with the smallest service requirement

• Provably optimal with respect to average response 
time
– Why do we care about “provably optimal”?
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SPT/SJF optimality – The interchange 
argument

tk

sf sg

tk+sf tk+sf+sg

• In any schedule that is not SPT/SJF, there is some 
adjacent pair of requests f and g where the service time 
(duration) of f, sf, exceeds that of g, sg

• The total contribution to average response time of f and 
g is 2tk+2sf+sg

• If you interchange f and g, their total contribution will be 
2tk+2sg+sf, which is smaller because sg < sf

• If the variability among request durations is zero, how 
does FCFS compare to SPT for average response 
time?



20

• It’s non-preemptive 
– So?

• … but there’s a preemptive version – SRPT (Shortest 
Remaining Processing Time first) – that accommodates 
arrivals (rather than assuming all requests are initially 
available)

• Sounds perfect!
– what about starvation?

– can you know the processing time of a request?

– can you guess/approximate?  How?

SPT/SJF drawbacks
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Algorithm #3: RR

• Round Robin scheduling (RR)
– Use preemption to offset lack of information about execution times

• I don’t know which one should run first, so let’s run them all!

– ready queue is treated as a circular FIFO queue

– each request is given a time slice, called a quantum
• request executes for duration of quantum, or until it blocks

– what signifies the end of a quantum?

• time-division multiplexing (time-slicing)

– great for timesharing
• no starvation

• Sounds perfect!
– how is RR an improvement over FCFS?

– how is RR an improvement over SPT?

– how is RR an approximation to SPT?
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RR drawbacks

• What if all jobs are exactly the same length?
– What would the schedule be (with average response time as 

the measure)?

• What do you set the quantum to be?
– no value is “correct”

• if small, then context switch often, incurring high overhead

• if large, then response time degrades

10 20 30

28 29 30

Average = 20

Average = 29
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Algorithm #4: Priority

• Assign priorities to requests
– choose request with highest priority to run next

• if tie, use another scheduling algorithm to break (e.g., RR)

– Goal:  non-fairness (favor one group over another)

• Abstractly modeled (and usually implemented) as 
multiple “priority queues”
– put a ready request on the queue associated with its priority

• Sounds perfect!
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Priority drawbacks

• How are you going to assign priorities?

• Starvation
– if there is an endless supply of high priority jobs, no low-

priority job will ever run

• Inversion (really bad starvation)
– Assume three threads H(igh), M(edium), and L(ow) with 

priorities

– Low runs and acquires a resource

– High preempts Low and blocks on that resource

– Medium becomes runnable and is CPU-bound

– Low can’t finish, and High is out of luck
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Program behavior and scheduling

• An analogy:
– Say you're at a bank

– There are two “identical” tellers:
• Teller 1 has 3 people in line

• Teller 2 has 6 people in line

– You get into the line for Teller 1

– Teller 2's line shrinks to 4 people

– Why might you now switch lines, preferring 5th in line for 
Teller 2 over 4th in line for Teller 1?
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Residual Life

• Given that a job has already executed for X seconds, 
how much longer will it execute, on average, before 
completing?

Residual
Life

Time Already Executed

Give priority to new jobs

Round robin

Give priority to old jobs

Residual Life
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History DOES matter 
(or how we can estimate the future)

• It’s been observed that workloads tend to have 
increasing residual life
– “if you don’t finish quickly, you’re probably a lifer”

– ”you did it before so you’re likely to do it again”

• This is exploited in practice by using a policy that 
discriminates against the old (not really ageism, 
but...)
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Multi-level Feedback Queues (MLFQ)

• MLFQ:
– there is a hierarchy of queues based on priority

– new requests enter the highest priority queue

– each queue is scheduled RR

– requests move between queues based on execution history

– lower priority queues may have longer quanta

• “Age” threads over time (feedback)
– increase priority as a function of accumulated wait time

– decrease priority as a function of accumulated processing 
time

– many heuristics have been explored in this space. All are 
ugly



Illustration
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UNIX scheduling

• Canonical scheduler is pretty much MLFQ
– 3-4 classes spanning ~170 priority levels

• timesharing: lowest 60 priorities
• system: middle 40 priorities
• real-time: highest 60 priorities

– priority scheduling across queues, RR within
• process with highest priority always run first
• processes with same priority scheduled RR

– processes dynamically change priority
• increases over time if process blocks before end of quantum
• decreases if process uses entire quantum

• Goals:
– reward interactive behavior over CPU hogs

• interactive jobs typically have short bursts of CPU


