
CSE 451: Operating Systems

Winter 2024

Module 9

Scheduling

Gary Kimura

2

Scheduling

• In discussing processes and threads, we talked about
context switching
– an interrupt occurs (device completion, timer interrupt)

– a thread causes a trap or exception

– may need to choose a different thread/process to run

• We glossed over the choice of which process or
thread is chosen to be run next
– “some thread from the ready queue”

• This decision is called scheduling
• scheduling is a policy

• context switching is a mechanism

3

Classes of Schedulers

• Batch
– Throughput / utilization oriented
– Example: audit inter-bank funds transfers each night, Pixar rendering,

Hadoop/MapReduce jobs
• Interactive

– Response time oriented
– Example: attu.cs

• Real time
– Deadline driven
– Example: embedded systems (cars, airplanes, etc.)

• Parallel
– Speedup-driven
– Example: “space-shared” use of a 1000-processor machine for large

simulations

We’ll be talking primarily about interactive schedulers

4

Multiple levels of scheduling decisions

• Long term
– Should a new “job” be “initiated,” or should it be held?

• typical of batch systems
• what might cause you to make a “hold” decision?

• Medium term
– Should a running program be temporarily marked as non-

runnable (e.g., swapped out)?

• Short term
– Which thread should be given the CPU next? For how long?
– Which I/O operation should be sent to the disk next?
– On a multiprocessor:

• should we attempt to coordinate the running of threads from the
same address space in some way?

• should we worry about cache state (processor affinity)?

5

Scheduling Goals I: Performance

• Many possible metrics / performance goals (which
sometimes conflict)
– maximize CPU utilization
– maximize throughput (requests completed / s)

– minimize average response time (average time from
submission of request to completion of
response)

– minimize average waiting time (average time from
submission of request to start of execution)

– minimize energy (joules per instruction) subject to
some constraint (e.g., frames/second)

6

Scheduling Goals II: Fairness

• No single, compelling definition of “fair”
– How to measure fairness?

• Equal CPU consumption? (over what time scale?)

– Fair per-user? per-process? per-thread?

– What if one process is CPU bound and one is I/O bound?

• Sometimes the goal is to be unfair:
– Explicitly favor some particular class of requests (priority

system), but…

– avoid starvation (be sure everyone gets at least some
service)

77

The basic situation





Schedulable units
(threads)

Resources
(CPU)

Scheduling:
- Who to assign each resource to
- When to re-evaluate your

decisions

8

When to assign?
• Pre-emptive vs. non-preemptive schedulers

– Non-preemptive
• once you give somebody the green light, they’ve got it until they

relinquish it
– an I/O operation
– allocation of memory in a system without swapping

– Preemptive
• you can re-visit a decision

– setting the timer allows you to preempt the CPU from a thread even if it
doesn’t relinquish it voluntarily

– in any modern system, if you mark a program as non-runnable, its memory
resources will eventually be re-allocated to others

• Re-assignment always involves some overhead
– Overhead doesn’t contribute to the goal of any scheduler

• We’ll assume “work conserving” policies
– Never leave a resource idle when someone wants it

• Why even mention this? When might it be useful to do something
else? The disparate speed between CPU and Storage highlight this
point

15

Algorithm #1: FCFS/FIFO

• First-come first-served / First-in first-out (FCFS/FIFO)
– schedule in the order that they arrive

– “real-world” scheduling of people in (single) lines
• supermarkets, McD’s, Starbucks …

– jobs treated equally, no starvation
• In what sense is this “fair”?

• Sounds perfect!
– in the real world, when does FCFS/FIFO work well?

• even then, what’s it’s limitation?

– and when does it work badly?

16

FCFS/FIFO example

• Suppose the duration of A is 5, and the durations of B
and C are each 1
– average response time for schedule 1 (assuming A, B, and

C all arrive at about time 0) is (5+6+7)/3 = 18/3 = 6
– average response time for schedule 2 is (1+2+7)/3 = 10/3 =

3.3
– consider also “elongation factor” – a “perceptual” measure:

• Schedule 1: A is 5/5, B is 6/1, C is 7/1 (worst is 7, ave is 4.7)
• Schedule 2: A is 7/5, B is 1/1, C is 2/1 (worst is 2, ave is 1.5)

Job A B C

CB Job A

time

1

2

17

• Average response time can be lousy
– small requests wait behind big ones

• May lead to poor utilization of other resources
– if you send me on my way, I can go keep another resource

busy

– FCFS may result in poor overlap of CPU and I/O activity
• E.g., a CPU-intensive job prevents an I/O-intensive job from

doing a small bit of computation, thus preventing it from going
back and keeping the I/O subsystem busy

• Note: The more copies of the resource there are to
be scheduled, the less dramatic the impact of
occasional very large jobs (so long as there is a
single waiting line)
– E.g., many cores vs. one core

FCFS/FIFO drawbacks

18

Algorithm #2: SPT/SJF

• Shortest processing time first / Shortest job first
(SPT/SJF)
– choose the request with the smallest service requirement

• Provably optimal with respect to average response
time
– Why do we care about “provably optimal”?

19

SPT/SJF optimality – The interchange
argument

tk

sf sg

tk+sf tk+sf+sg

• In any schedule that is not SPT/SJF, there is some
adjacent pair of requests f and g where the service time
(duration) of f, sf, exceeds that of g, sg

• The total contribution to average response time of f and
g is 2tk+2sf+sg

• If you interchange f and g, their total contribution will be
2tk+2sg+sf, which is smaller because sg < sf

• If the variability among request durations is zero, how
does FCFS compare to SPT for average response
time?

20

• It’s non-preemptive
– So?

• … but there’s a preemptive version – SRPT (Shortest
Remaining Processing Time first) – that accommodates
arrivals (rather than assuming all requests are initially
available)

• Sounds perfect!
– what about starvation?

– can you know the processing time of a request?

– can you guess/approximate? How?

SPT/SJF drawbacks

21

Algorithm #3: RR

• Round Robin scheduling (RR)
– Use preemption to offset lack of information about execution times

• I don’t know which one should run first, so let’s run them all!

– ready queue is treated as a circular FIFO queue

– each request is given a time slice, called a quantum
• request executes for duration of quantum, or until it blocks

– what signifies the end of a quantum?

• time-division multiplexing (time-slicing)

– great for timesharing
• no starvation

• Sounds perfect!
– how is RR an improvement over FCFS?

– how is RR an improvement over SPT?

– how is RR an approximation to SPT?

22

RR drawbacks

• What if all jobs are exactly the same length?
– What would the schedule be (with average response time as

the measure)?

• What do you set the quantum to be?
– no value is “correct”

• if small, then context switch often, incurring high overhead

• if large, then response time degrades

10 20 30

28 29 30

Average = 20

Average = 29

23

Algorithm #4: Priority

• Assign priorities to requests
– choose request with highest priority to run next

• if tie, use another scheduling algorithm to break (e.g., RR)

– Goal: non-fairness (favor one group over another)

• Abstractly modeled (and usually implemented) as
multiple “priority queues”
– put a ready request on the queue associated with its priority

• Sounds perfect!

24

Priority drawbacks

• How are you going to assign priorities?

• Starvation
– if there is an endless supply of high priority jobs, no low-

priority job will ever run

• Inversion (really bad starvation)
– Assume three threads H(igh), M(edium), and L(ow) with

priorities

– Low runs and acquires a resource

– High preempts Low and blocks on that resource

– Medium becomes runnable and is CPU-bound

– Low can’t finish, and High is out of luck

25

Program behavior and scheduling

• An analogy:
– Say you're at a bank

– There are two “identical” tellers:
• Teller 1 has 3 people in line

• Teller 2 has 6 people in line

– You get into the line for Teller 1

– Teller 2's line shrinks to 4 people

– Why might you now switch lines, preferring 5th in line for
Teller 2 over 4th in line for Teller 1?

26

Residual Life

• Given that a job has already executed for X seconds,
how much longer will it execute, on average, before
completing?

Residual
Life

Time Already Executed

Give priority to new jobs

Round robin

Give priority to old jobs

Residual Life

27

History DOES matter
(or how we can estimate the future)

• It’s been observed that workloads tend to have
increasing residual life
– “if you don’t finish quickly, you’re probably a lifer”

– ”you did it before so you’re likely to do it again”

• This is exploited in practice by using a policy that
discriminates against the old (not really ageism,
but...)

28

Multi-level Feedback Queues (MLFQ)

• MLFQ:
– there is a hierarchy of queues based on priority

– new requests enter the highest priority queue

– each queue is scheduled RR

– requests move between queues based on execution history

– lower priority queues may have longer quanta

• “Age” threads over time (feedback)
– increase priority as a function of accumulated wait time

– decrease priority as a function of accumulated processing
time

– many heuristics have been explored in this space. All are
ugly

Illustration

3/1/2024 29

30

UNIX scheduling

• Canonical scheduler is pretty much MLFQ
– 3-4 classes spanning ~170 priority levels

• timesharing: lowest 60 priorities
• system: middle 40 priorities
• real-time: highest 60 priorities

– priority scheduling across queues, RR within
• process with highest priority always run first
• processes with same priority scheduled RR

– processes dynamically change priority
• increases over time if process blocks before end of quantum
• decreases if process uses entire quantum

• Goals:
– reward interactive behavior over CPU hogs

• interactive jobs typically have short bursts of CPU

